Constructing ultrafine Pt nanoparticles anchored on N-doped porous carbon nanofibers for efficient and stable oxygen reduction reaction

نویسندگان

چکیده

Synthesis of ultrafine Pt nanoparticles with high metal utilization is essential to achieve efficient oxygen reduction reaction (ORR) a low mass loading Pt; however, it remains challenging. Here, we propose facile yet robust strategy construct (∼3 nm) anchored on porous carbon nanofibers (PCNFs) via electrospinning. It found that the architecture facilitates transport and active sites exposure, thereby providing highly accessible sites. As result, synthesized Pt@PCNFs (4.2 wt%) display excellent ORR activity 41 51 A gPt−1 at 0.9 V in alkaline acidic electrolytes, 8 times 10 corresponding value for commercial Pt/C catalyst, respectively. More importantly, strong metal-support interaction between N-doped nanofibers, as well shell protection, significantly enhances stability by suppressing aggregation during ORR, consequently much superior benchmark both acid media different temperatures. This work provides approach developing stable low-Pt-based electrocatalysts toward ORR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction

A low cost, durable, and efficient electrocatalyst for oxygen reduction reactions (ORR) is essential for high-performance fuel cells. Here, we fabricated Co3O4 nanoparticles (NPs) anchored on N-doped mesoporous carbon nanofibers (Co3O4/NMCF) by electrospinning combined with the simple heat treatment. Within this composite, carbon nanofibers possess a mesoporous structure, contributed to obtain ...

متن کامل

Anchoring CoFe2O4 Nanoparticles on N‐Doped Carbon Nanofibers for High‐Performance Oxygen Evolution Reaction

The exploration of earth-abundant and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is of great significant for sustainable energy conversion and storage applications. Although spinel-type binary transition metal oxides (AB2O4, A, B = metal) represent a class of promising candidates for water oxidation catalysis, their intrinsically inferior electrical conductivity ex...

متن کامل

Low content Pt nanoparticles anchored on N-doped reduced graphene oxide with high and stable electrocatalytic activity for oxygen reduction reaction

A novel kind of Pt/N-rGO hybrid possessing of low content 5.31 wt.% Pt anchored on the surface of nitrogen doped reduced graphene oxide (N-rGO) evenly was prepared. The Pt has uniformed 2.8 nm diameter and exposed (111) crystal planes; meanwhile, the N works as the bridge between Pt and rGO with the Pt-N and N-C chemical bonds in Pt/N-rGO. The Pt/N-rGO material has a very high electrocatalytic ...

متن کامل

Porous Carbon Nanoparticles Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Oxygen Reduction Reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precurs...

متن کامل

In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction.

Developing efficient and economical noble-metal free catalysts for oxygen reduction reaction (ORR) is one of the essential factors for the industrialization of fuel cells. Recent studies on transition metal ORR catalysts have become the priority to practical low-temperature fuel cells. Herein, we proposed a novel in situ design, Fe2N nanoparticles (NPs) in an N doped porous carbon matrix (Fe2N@...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China. Materials

سال: 2023

ISSN: ['2095-8226', '2199-4501']

DOI: https://doi.org/10.1007/s40843-023-2483-x